Chain rules for functions of matrices
نویسندگان
چکیده
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملDo the chain rules for matrix functions hold without commutativity?
This paper shows that the commutativity condition [A(t), A′(t)] = 0 is often not necessary to guarantee the chain rules for matrix functions: d dtf(A(t)) = A ′(t)f ′(A(t)) and d dtf(A(t)) = f ′(A(t))A′(t), where A(t) is a square matrix of differentiable functions and f is an analytic function. A further question on the chain rules is presented and discussed.
متن کاملThe exponential functions of central-symmetric $X$-form matrices
It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...
متن کاملOn Generalized Sum Rules for Jacobi Matrices
This work is in a stream (see e.g. [4], [8], [10], [11], [7]) initiated by a paper of Killip and Simon [9], an earlier paper [5] also should be mentioned here. Using methods of Functional Analysis and the classical Szegö Theorem we prove sum rule identities in a very general form. Then, we apply the result to obtain new asymptotics for orthonormal polynomials.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1998
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(98)10083-6